
Migrating your
Delphi™ 5
Projects to Kylix™

Author: Bob Swart (a.k.a. Dr. Bob - www.drbob42.com)

Introduction
This paper provides an overview and detailed description of

migrating applications from Borland® Delphi5 for Windows®

to Kylix for Linux.® We first explain why it is an asset to be

able to develop applications for both Windows and Linux (and

to easily migrate existing applications from Windows to Linux).

Then we outline the shared architecture and technologies

between the tools and projects, including the differences

between VCL (visual component library) and CLX™ (component

library for cross-platform development). This paper also

discusses topics developers should be mindful of, as well as best

practices developers should keep in order to migrate code from

Windows to Linux and to maintain single-source, cross-platform

applications between these two platforms (something which has

become much easier with Delphi 6).

Contents
Migrating Delphi projects to Kylix 2

Migrating Database data to Linux 3

Moving from VCL to CLX 6

Migrating RTL usage 11

Conclusion 13

Kylix™

2

Migrating Delphi™ Projects to Kylix™
This white paper is not about cross-platform code shared

between Delphi 5 and Kylix, but rather about migrating existing

Delphi 5 (VCL) projects, components, and source code to Kylix

(CLX) on Linux. This is an important first step in writing cross-

platform code. (While the modified project source code for the

Kylix edition of your project may no longer work with Delphi 5,

it is likely to work flawlessly with Delphi 6).

We will see how to write simple, single-source applications

(using as few IFDEFs as possible) that can be compiled using

both Delphi for Windows (VCL) and Kylix for Linux (CLX).

We will also provide an overview of features that are in Delphi 5

but are not supported in Kylix, and we’ll suggest alternatives.

Why migrate?
Let’s consider the benefits of migrating Delphi 5 projects from

Windows to Linux (using Kylix). Apart from being able to share

components and sections of source code, the biggest advantage

is that a whole new market can be penetrated with existing

code:you need not re-invent the wheel (though you may have to

fill your tires with fresh air).

I, for example, have been able to migrate a number of existing

Web server applications (using Delphi 5 WebBroker™

technology) from the Microsoft Internet Information Server

(IIS) running on Windows to Apache™ Shared Object (DSO)

running on Linux—in less than one hour each. This means I am

no longer limited to Web servers running Windows NT or

Windows 2000. I can deploy on Linux Web servers (one area

where Linux is particularly strong,). Of course, the same can be

done for regular common gateway interface (CGI) Web server

applications—in fact, it’s even easier for those, as we will see.

Migrating projects
The first objective when migrating your Delphi 5 project to

Kylix is to physically move your Delphi 5 project from a

Windows machine to a Linux machine. This must be done

because Linux uses case-sensitive filenames, and Windows does

not:. Whereas Project1.dpr and PROJECT1.DPR both point to

the same file in Windows, they are two different files in Linux.

The names of your project and units (as mentioned on the first

line of your project and unit source files) must be identical to the

actual filename. And case-sensitivity becomes even more

important when considering the list of units inside the uses

clauses of each unit. If your unit is called “Myunit” and stored as

Myunit.pas on disk, then you must also call it Myunit, not

MyUnit, inside the uses clause because the unit named MyUnit

in file MyUnit.pas will not be found. As a workaround, you can

explicitly add to every unit in the uses clause of the main project

source file the name of the file where the unit can be found. For

example:

uses
 MyUnit in “Myunit.pas”,
 unit1 in “Unit1.pas”;

Note that these “in” clauses will appear only in your main

project source file, not in unit source files.

This might seem like a trivial task, but it could take a while

before everything is renamed correctly, so at least all your project

units can be found by the compiler. Speaking of which, a Delphi

5 project consists of a .dpr (project source code) file, a .res (icon

resource) file, an .opt (project options) file, a .cfg (command-line

options) file, and a set of .pas files, usually with corresponding

.dfm files. A Kylix project consists of a .dpr (project source

code) file, a .res file, a .conf (configuration) file, a .kof (Kylix

Option File), and a set of .pas files with corresponding .xfm files.

The Delphi 5 .cfg file corresponds to a Kylix .conf file, and a

Delphi .opt file corresponds to a Kylix .kof file. Inside, these

files differ a bit (some compiler options are meaningless in Kylix

or Windows, and directories are specified with a slash on Linux

instead of a drive letter, and a backslash on Windows), hence the

new file extension. You can best convert files by hand or start a

new empty project and migrate your units and other source

code. The latter is my preference (especially for WebBroker

projects).

The .xfm files are simply .dfm files. The easiest and perhaps

most reliable way to turn .dfm files into .xfm files is to make sure

Kylix™

3

the .dfm files are stored as text. Either have Delphi store them as

text or convert them to text using the convert.exe utility that

comes with Delphi. Then, simply rename them as .xfm files.

Thus, if your .dfm files are already stored as text instead of

binary files, you can simply rename them from .dfm to .xfm and

you’re prepared for the next phase.

Single source
If you want to maintain a single source of your project that can

compile with both Delphi and Kylix, you must at least make sure

that Delphi uses the .dfm file and Kylix the .xfm file. This is

handled by the {$R *.DFM} statement in Delphi and the {$R

*.xfm} statement in Kylix. A single-source piece of code can be

written using IFDEF, where Windows is identified by the

conditional symbol MSWINDOWS, and Linux by LINUX:

{$IFDEF MSWINDOWS}
 {$R *.DFM}
{$ENDIF}
{$IFDEF LINUX}
 {$R *.xfm}
{$ENDIF}

You should never use the {$ELSE} directive and assume that if

it is not Windows it should be Linux, or vice versa. It’s not

impossible that a future version of Delphi or Kylix might run on

an entirely new operating system, and then the {$ELSE} could

lead to incorrect results. Also, make sure you use

MSWINDOWS instead of WIN32, or your code might break

when a 64-bit version of Windows ships.

Another conditional symbol defined for Kylix that might be

useful is VER140, which indicates that Kylix is version 14 of the

Pascal compiler (in contrast, Turbo Pascal™ was version 1,

Delphi 1.0x is version 8 with VER80 defined, and Delphi 5 is

version 13 with VER130 defined).

Non-portable projects
Not every Delphi 5 project can be migrated to Kylix.

Specifically, the ActiveX® library cannot be ported to Linux (no

COM objects, ActiveX controls, ADO, ActiveForms, or Active

Server Pages). This is unsurprising, but it’s best to know about

this before you start to invest time and/or money in a single-

source cross-platform ActiveForm solution.

With the aforementioned migration actions in mind, normal

Windows GUI applications are good candidates for porting to

Linux.

WebBroker™ targets
Delphi 5 WebBroker™ architecture supports CGI, WinCGI, and

ISAPI/NSAPI Web server applications. NSAPI support is

handled by the WebBridge that is based on the same code as the

ISAPI DLL. Linux supports neither ISAPI (and hence no

NSAPI via the WebBridge) nor WinCGI. But that doesn’t mean

all your non-CGI WebBroker applications are impossible to

migrate to Linux. One good thing about WebBroker is the fact

that the core functionality of your Web server application is

contained within the Web module. The Web module is not

concerned with the target of the application. In fact, even with a

standard CGI WebBroker application, you may want to port

only your Web modules to Linux and create a new WebBroker

application using Kylix (which has options for CGI or

Apache.shared object). Then you can add the Web modules to

your new native WebBroker application on Linux. In a matter of

minutes, your WebBroker application skeleton will work.

Migrating database data to Linux
Delphi 5 supports a number of different databases and table

formats, such as BDE (dBASE®, Paradox®) InterBase® (native

as well as via the BDE), ODBC/ADO (to Access and FoxPro,

for example), and SQL Server to Oracle,® DB2,® Informix,® and

SQL Server. Kylix does not support BDE but has replaced it

with dbExpress™ for open access to native Linux database

engines. The Kylix desktop developer supports MyBase® (local

XML), MySQL,® and InterBase, while the Kylix server

developer adds support for Oracle and DB2.

As a consequence, not all database formats available in Delphi 5

will be available for Kylix. Specifically, the Borland® Database

Kylix™

4

Engine (dBase, Paradox formats) will not be ported to Linux.

This means that your dBase and Paradox tables cannot be used

by Kylix.

Fortunately, you can use Delphi 5 to migrate your dBase and

Paradox tables to InterBase or the local ClientDataSet format

(CDS or XML). Data in XML format can be used by the

MyBase personal XML database for Linux.

Using Delphi 5 Enterprise, you can connect a table to a

DataSetProvider in order to feed a ClientDataSet component

that can be used to store the data in .cds or .XML format. If you

do not have Delphi 5 Enterprise (and no ClientDataSet

component), consider using the following source code (based on

an article I wrote for The Delphi Magazine, published by iTec:

www.TheDelphiMagazine.com) to assist in converting a dataset

to XML:

unit TableXML;
// Routine DataSetXML converts a DataSet to XML
format
// Author: Bob Swart (a.k.a. Dr. Bob -
www.drbob42.com)
// Available as freeware, but use at your own
risk!
//
interface
uses
 DB;

function DataSetXML(DataSet: TDataSet; const
FileName: String): Integer;

implementation
uses
 SysUtils, TypInfo;

function DataSetXML(DataSet: TDataSet; const
FileName: String): Integer;
var
 F: System.Text;
 i: Integer;

 function Print(Str: String): String;
 { Convert a fieldname to a printable name }
 var
 i: Integer;
 begin
 for i:=Length(Str) downto 1 do
 if not (UpCase(Str[i]) in
[‘A’..’Z’,’1’..’9’]) then
 Str[i] := ‘_’;
 Result := Str
 end {Print};
 function EnCode(Str: String): String;
 { Convert memo contents to single line XML }
 var

 i: Integer;
 begin
 for i:=Length(Str) downto 1 do
 begin
 if (Ord(Str[i]) < 32) or (Str[i] = ‘“‘)
then
 begin
Insert(‘&#’+IntToStr(Ord(Str[i]))+’;’,Str,i+1);
 Delete(Str,i,1)
 end
 end;
 Result := Str
 end {EnCode};
begin
 Result := -1;
 ShortDateFormat := ‘YYYYMMDD’;
 System.Assign(F,FileName);
 try
 System.Rewrite(F);
 writeln(F,’<?xml version=“1.0”
standalone=“yes”?>‘);
 writeln(F,’<DATAPACKET Version=“2.0”>‘);
 with DataSet do
 begin
 writeln(F,’<METADATA>‘);
 writeln(F,’<FIELDS>‘);
 if not Active then
 FieldDefs.Update { get info without
opening the database };
 for i:=0 to Red(FieldDefs.Count) do
 begin
 write(F,’<FIELD ‘);
 if Print(FieldDefs[i].Name) <>
FieldDefs[i].Name then { fieldname }
write(F,’fieldname=“‘,FieldDefs[i].Name,’” ‘);

write(F,’attrname=“‘,Print(FieldDefs[i].Name),’”
fieldtype=“‘);
 case FieldDefs[i].DataType of
 ftString,
 ftFixedChar,
 ftWideString: write(F,’string’);
 ftBoolean: write(‘boolean’);
 ftSmallint: write(F,’i2’);
 ftInteger,
 ftWord: write(F,’i4’);
 ftAutoInc: write(F,’i4” readonly=“true”
SUBTYPE=“Autoinc’);
 ftFloat: write(F,’r8’);
 ftCurrency: write(F,’r8”
SUBTYPE=“Money’);
 ftBCD: write(F,’fixed’);
 ftDate: write(F,’date’);
 ftTime: write(F,’time’);
 ftDateTime: write(F,’datetime’);
 ftBytes: write(F,’bin.hex’);
 ftVarBytes,
 ftBlob: write(F,’bin.hex”
SUBTYPE=“Binary’);
 ftMemo: write(F,’bin.hex”
SUBTYPE=“Text’);
 ftGraphic,
 ftTypedBinary: write(F,’bin.hex”
SUBTYPE=“Graphics’);
 ftFmtMemo: write(F,’bin.hex”
SUBTYPE=“Formatted’);
 ftParadoxOle,

Kylix™

5

 ftDBaseOle: write(F,’bin.hex”
SUBTYPE=“Ole’)
 end;
 if FieldDefs[i].Required then write(F,’”
required=“true’);
 if FieldDefs[i].Size > 0 then write(F,’”
WIDTH=“‘,FieldDefs[i].Size);
 writeln(F,’”/>‘)
 end;
 writeln(F,’</FIELDS>‘);
 writeln(F,’</METADATA>‘);
 if not Active then Open;
 writeln(F,’<ROWDATA>‘);
 Result := 0;
 while not Eof do
 begin
 Result := Result + 1;
 write(F,’<ROW ‘);
 for i:=0 to Pred(Fields.Count) do
 if (Fields[i].AsString <> ‘‘) and
 ((Fields[i].DisplayText =
Fields[i].AsString) or
 (Fields[i].DisplayText = ‘(MEMO)’))
then
write(F,Print(Fields[i].FieldName),’=“‘,
 EnCode(Fields[i].AsString),’”
‘);
 writeln(F,’/>‘);
 Next
 end;
 writeln(F,’</ROWDATA>‘)
 end;
 writeln(F,’</DATAPACKET>‘)
 finally
 System.Close(F)
 end
end;

After you’ve converted your tables, you can move them from

Windows to Kylix and load the XML files using MyBase. When

needed, you can then use MyBase to migrate the data even

further (to Oracle, for example). Of course, you can always

move your database to an InterBase database, which runs on

Linux.

Finally, there is no support in Kylix for ODBC/ADO (to Access

and FoxPro, for example) or SQL Server and Informix. For

these database formats, it would be best to consider a migration

to either InterBase or Oracle.

Third-party ODBC support
The dbExpress Gateway for ODBC from Easysoft

(www.easysoft.com/products/kylix/main.phtml) enables Kylix

applications to access any ODBC data source. It works with

Linux databases that have a driver (such as InterBase, Postgres,

Oracle, etc.), plus remote databases via the Easysoft ODBC

bridge software. This means that Kylix applications can work

with Access and SQL Server, as well as with any database with a

Windows ODBC driver. The interface is also compatible with

unixODBC, the open-source ODBC driver manager for Linux.

dbExpress™

Kylix uses dbExpress for cross-platform data-access technology.

There is a difference between the way dbExpress accesses your

database and tables and the way you might be used to doing it

with the BDE, ADO, and other Delphi database mechanisms.

For one thing, dbExpress offers only a unidirectional cursor to

your tables. This means that you can browse forward but not

backward. This is designed for efficiency, but it could be quite

different from more familiar methods.

You can still browse back and forth through your data, once you

connect a dbExpress data source to a ClientDataSet. This source

then will be used as a local briefcase. dbExpress drivers are

available for InterBase, Oracle, DB2, and MySQL, but it is also

possible to write your own custom dbExpress driver (contact

Borland for details).

Table 1 shows how the BDE, InterBase Express,™ and ADO

Express components map to the dbExpress components. Since

most of your Delphi database applications perform editing and

navigation, you should be prepared to “insert” both a

DataSetProvider and a ClientDataSet component for each newly

ported dbExpress component. This allows your application to be

connected to data-aware components such as a TDBGrid or

TDBEdit. For now, there is no automatic procedure or tool to

assist in this task.

The final step in migrating your database application is to make

sure that modifications in your tables (using the ClientDataSet

component) are indeed sent back to the original dbExpress

dataset. Do this by explicitly calling the ClientDataSet.

ApplyUpdates method; for example, in the OnAfterPost event

of your ClientDataSet:

Kylix™

6

procedure
TForm1.ClientDataSet1AfterPost(DataSet:
TDataSet);
begin
 if DataSet IS TDataSet then
 TClientDataSet(DataSet).ApplyUpdates(-1)
end;

This step may be a bit slow, since you now call ApplyUpdates

for every Post in your ClientDataSet. The alternative is to have

an explicit “ApplyUpdates” button on your Form (or to fire

ApplyUpdates when the user closes the Form or when a specific

timer event fires). There are numerous possibilities. The safest,

though slowest approach is the one described above.

For more information on using ClientDataSets, please see

existing MIDAS documentation on the Borland Community Web site

(http://communityborland.com). or on my own site atwww.drbob42.com

Moving from VCL to CLX
The Delphi visual component library (VCL) contains much

more than visual components. In my view, this puzzle is solved

by the component library for cross-platform development

(CLX), which is divided into four parts (BaseCLX,

VisualCLX,™ DataCLX,™ and NetCLX™), of which only one is

visual—a much better classification!

The Kylix CLX maintains the architecture and hierarchy of the

Delphi VCL, which makes the look-and-feel almost identical for

Delphi developers—and your applications. Behind the scenes,

CLX is making calls to the Qt library, which is available for both

Windows and Linux (and hence guarantees the cross-platform

nature of CLX when both Kylix and Delphi are available).

But we should first look at existing Delphi 5 VCL projects,

especially the components available in the Delphi 5 component

palette, to see which ones will be available in the new CLX

hierarchy (and, more importantly, which ones won’t). If you

know beforehand that a certain component will not be available

or supported by Kylix, then it’s often much cheaper to create a

workaround while still in Delphi 5, rather than move to Linux

and potentially have to rewrite everything.

Available components
We will now examine an overview of components in Delphi 5

(Enterprise) that are available in Kylix (Server Developer). We

will also list components of Delphi 5 that are not available in

Kylix, suggesting alternative, third-party components or ways to

avoid the use of these components altogether.

The standard page of the Delphi 5 component palette contains

only components that can be found in Kylix, so everything will

port over. For individual components, there may be some

properties or methods that differ, but these changes often are

easy to fix.

The additional page of the Delphi 5 component palette contains

three components that cannot be found in Kylix, namely

TStaticText, TapplicationEvents, and TChart. For TStaticText,

you can always use TLabel (the difference between a StaticText

and a Label is that a StaticText is derived from TWinControl and

has its own Windows handle).

The Win32 page of the Delphi 5 component palette is gone in

Kylix. Instead, we have a common control page on the Kylix

component palette, which contains most, but not all of the

components of the Win32 tab. Components that are missing on

the common controls tab in Kylix are TRichEdit, TUpDown

(there is a TSpinEdit, which in Delphi appears on the Samples

tab), THotKey, TAnimate, TDateTimePicker, TCalendar,

TCoolBar, and TPageScroller.

Kylix™

7

The system page of the Delphi 5 component palette also is gone

in Kylix, and so are most of the controls on those pages.. Two

of them, TTimer and TPainBox, appear in the Additional page

of the Kylix component palette. The other components,

TMediaPlayer, TOleContainer, TDdeClientConv,

TDdeClientItem, TDdeServerConv, and TDdeServerItem, do

not exist in Kylix.

The data access page of the Delphi 5 component palette, or, in

other words, the BDE page, is almost entirely gone from Kylix.

Only one component from this tab remains: TDataSource. The

data access page in Kylix also contains the TClientDataSet and

TDataSetProvider components (three in total).

Please check the “Migrating database data to Linux” section for

more information regarding the migration of your database data

from BDE to MyBase or InterBase.

The data controls page of the Delphi 5 component palette

contains three components not found on the Data Controls tab

in Kylix: TDBRichEdit, TDBCtrlGrid, and TDBChart.

The ADO tab of the Delphi 5 component palette is entirely

gone and not present at all in Kylix.

The InterBase tab of the Delphi 5 component palette also is

gone in Kylix. The single dbExpress tab of Kylix replaces the

functionality of the components in the Data Access (BDE),

ADO, and InterBase tabs.

The MIDAS tab of the Delphi 5 component palette is gone in

Kylix, though the TClientDataSet and TDataSetprovider

components appear on the data access tab in Kylix. The other

components, TDCOMConnection, TSocketConnection,

TSimpleObjectBroker, TwebConnection, and

TCorbaConnection are not present in Kylix. The first may never

appear in Kylix (DCOM on Linux, perhaps?), but the others may

become available in the forthcoming Enterprise edition of Kylix.

The InternetExpress™ tab of the Delphi 5 component palette is

not present in Kylix, mainly because InternetExpress and

MIDAS are not supported in the Kylix Server edition; these tabs

will appear in the Enterprise edition of, however. The absence of

MIDAS and InternetExpress means we cannot yet write

distributed applications with Kylix.

The Internet tab of the Delphi 5 component palette contains a

number of components that cannot be found on the Internet tab

in Kylix: TClientSocket and TServerSocket (these two seem to

be replaced with TTcpClient, TTcpServer, and TUdpSocket) and

TWebBrower (which was merely a wrapper around the Internet

Explorer ActiveX control). Apart from these three components,

the TQueryTableProducer in Delphi has been renamed as

TSQLQueryTableProducer in Kylix.

The FastNet tab of the Delphi 5 component palette has been

replaced by three Indy (Internet direct) tabs, namely Indy

Clients, Indy Servers, and Indy Misc. It is likely that most, if not

Kylix™

8

all, of the code in projects using FastNet will need to be

rewritten using Indy components.

The Decision Cube tab of the Delphi 5 component palette is

gone in Kylix as well.

The QReport tab of the Delphi 5 component palette is no

longer present in Kylix. For reporting, I suggest looking at third-

party support such as Rave Reports from Nevrona.

The dialogs tab of the Delphi 5 component palette contains four

components that are missing in Kylix, namely

TOpenPictureDialog, TSavePictureDialog, TprintDialog, and

TPrinterSetupDialog.

The Win 3.1 tab of the Delphi 5 component palette contains no

components that can be found in Kylix. This means no TTabSet,

no TOutline, no TTabbedNotebook, no TNotebook, no

THeader, no TFileListBox, no TDirectoryListbox, no

TDriveComboBox, and no TFilterComboBox.

Finally, the samples page of the Delphi 5 component palette is

not present in Kylix, although the TSpinEdit appears on the

common controls tab of Kylix. Nor is there TGauge,

TColorGrid, TSpinButton, TDirectoryOutline, TCalendar, nor

TIBEventAlerter.

Suggested alternatives
The following table contains a list of missing components

(sometimes entire tabs) and the recommended component in

Kylix, or an alternative way to realize the required functionality.

*Table 1

Delphi 5
Component

Kylix
Component

Comments

Additional
TStaticText TLabel
TApplicationEvents
TChart TeeChart
Win32
TRichEdit Win32-specific

component
TUpDown TSpinEdit
THotKey Win32-specific

component
TAnimate Win32-specific

component
TDateTimePicker Win32-specific

component
TCalendar Win32-specific

component
TCoolBar Win32-specific

component
TPageScroller Win32-specific

component
System
TMediaPlayer
TOleContainer Win32-specific

component
TDdeClientConv Win32-specific

component
TDdeClientItem Win32-specific

component
TDdeServerConv Win32-specific

component
TDdeServerItem Win32-specific

component
Data Access dbExpress
TTable TSQLTable Plus DataSetProvider

and ClientDataSet
TQuery TSQLQuery plus DataSetProvider

and ClientDataSet
TStoredProc TSQLStored

Proc
plus DataSetProvider
and ClientDataSet

Kylix™

9

TDatabase TSQL
Connection

TSession BDE-specific
component

TBatchMove
TUpdateSQL TSQLDataSet plus DataSetProvider

and ClientDataSet
TNestedTable
Data Controls

TDbRichEdit Win32-specific
component

TDbCtrlGrid
TDbChart
ADO dbExpress
TADO
Connection

TSQL
Connection

TADO
Command

TSQLDataSet plus DataSetProvider
and ClientDataSet

TADO
DataSet

TSQLDataSet plus DataSetProvider
and ClientDataSet

TADO
Table

TSQLTable plus DataSetProvider
and ClientDataSet

TADO
Query

TSQLQuery plus DataSetProvider
and ClientDataSet

TADO
StoredProc

TSQLStored
Proc

plus DataSetProvider
and ClientDataSet

TRDSConnection
TSQLMonitor
TSQLClient
DataSet

InterBase dbExpress
TIBTable TSQLTable plus DataSetProvider

and ClientDataSet
TIBQuery TSQLQuery plus DataSetProvider

and ClientDataSet
TIBStoredProc TSQLStored

Proc
plus DataSetProvider
and ClientDataSet

TIBDatabase TSQL
Connection

TIBTransaction
TIBUpdateSQL TSQLDataSet plus DataSetProvider

and ClientDataSet
TIBDataSet TSQLDataSet plus DataSetProvider

and ClientDataSet
TIBSQL TSQLDataSet plus DataSetProvider

and ClientDataSet
TIBDatabaseInfo
TIBSQLMonitor TSQLMonitor
TIBEvents
MIDAS

TDCOMConnection Win32-specific
component

TSocketConnection Expected in Kylix
Enterprise

TsimpleObject
Broker

Expected in Kylix
Enterprise

TWebConnection Expected in Kylix
Enterprise

TCorbaConnection Expected in Kylix
Enterprise

InternetExpress
TXMLBroker Expected in Kylix

Enterprise
TMidasPageProducer Expected in Kylix

Enterprise
Internet
TClientSocket TTcpClient,

TUdpSocket
TServerSocket TTcpServer,

TUdpSocket
TWebBrowser Win32-specific

component
FastNet Indy Servers

Indy Clients
Indy Misc

Decision Cube
QReport Rave Reports from

Nevrona are
recommended

Dialogs
TOpenPictureDialog
TSavePictureDialog
TPrintDialog
TPrinterSetupDialog
Win 3.1

Tip: if you want to start building cross-platform applications

with Delphi 5 and Kylix now, you should configure the Delphi 5

component palette in such a way that it does not show the

components that are not present in Kylix. This is easy to do: just

right-click with the mouse on the component palette, select

“properties”, and hide all components from the table.

Components and units
The discussion of CLX versus VCL is continued with the

naming convention for the CLX units (such as QGraphics

Kylix™

10

versus Graphics), which heralds Delphi 6—the first

development environment with design-time support integrated

for two application frameworks (VCL and CLX).

The following table lists the units in Delphi 5 (from the

Source\VCL directory) that are renamed in Kylix (also in the

Source\VCL directory). Note that most changes involve a Q

prefix.

Delphi 5 unit Kylix unit Comments
ActnList QActnList
ADOConst Win32-specific—not in

KylixWin32-specific—not in
Kylix

ADODB Win32-specific—not in
KylixWin32-specific—not in
Kylix

ADOInt Win32-specific—not in
KylixWin32-specific—not in
Kylix

AppEvnts Not in Kylix
AxCtrls Win32-specific—not in

KylixWin32-specific—not in
Kylix

BdeConst Not in Kylix
BdeMts Not in Kylix
Buttons QButtons
CheckLst QCheckLst
Classes Classes
ClipBrd QClipBrd
ComCtrls QComCtrls
ComStrs Not in Kylix
Consts Consts see also QConsts
Contnrs Contnrs
Controls QControls
CORBACon Expected in Kylix Enterprise
CORBARdm Expected in Kylix Enterprise
CORBAStd Expected in Kylix Enterprise
CORBAVcl Expected in Kylix Enterprise
CtlPanel Not in Kylix
DataBkr Not in Kylix
DB DB
DBActns QDBActns
DBCGrids Not in Kylix
DBClient DBClient
DBCommon DBCommon
DBConsts DBConsts
DBCtrls QDBCtrls
DBExcept Not in Kylix

DBGrids QDBGrids
DBInpReq Not in Kylix
DBLookup Not in Kylix
DBOleCtl Win32-specific—not in

KylixWin32-specific—not in
Kylix

DBPWDlg DBLogDlg
DBTables Not in Kylix
DdeMan Win32-specific—not in

KylixWin32-specific—not in
Kylix

Dialogs QDialogs
DRTable Not in Kylix
DSIntf DSIntf
ExtCtrls QExtCtrls
ExtDlgs Not in Kylix
FileCtrl Not in Kylix
Forms QForms
Graphics QGraphics
Grids QGrids
ImgList QImgList
IniFiles IniFiles
Mask QMask
Masks Masks See also MaskUtil
MConnect Expected in Kylix Enterprise
Menus QMenus
Midas Midas
MidasCon Not in Kylix
MidConst MidConst MIDAS is now called

DataSnap™
MPlayer Win32-specific—not in

KylixWin32-specific—not in
Kylix

Mtsobj Win32-specific—not in
KylixWin32-specific—not in
Kylix

MtsRdm Win32-specific—not in
KylixWin32-specific—not in
Kylix

Mtx Win32-specific—not in
KylixWin32-specific—not in
Kylix

mxConsts Decision Cube - not in Kylix
ObjBrKr Expected in Kylix Enterprise
OleAuto Win32-specific—not in Kylix
OleConst Win32-specific—not in Kylix
OleCtnrs Win32-specific—not in Kylix
OleCtrls Win32-specific—not in Kylix
OLEDB Win32-specific—not in Kylix
OleServer Win32-specific—not in Kylix
Outline Not in Kylix

Kylix™

11

Printers QPrinters
Provider Provider
Registry Not in Kylix (use IniFiles)
ScktCnst Not in Kylix
ScktComp Not in Kylix
SConnect Not in Kylix
SMIntf Not in Kylix
StdActns QStdActns
StdCtrls QStdCtrls
StdVcl Win32-specific—not in Kylix
SvcMgr WinNT specific - not in Kylix
SyncObjs SyncObjs
Tabnotbk Not in Kylix
Tabs Not in Kylix
Toolwin No docking supported in Kylix
TypInfo TypInfo
VCLCom Win32-specific—not in Kylix
WebConst Win32-specific—not in

KylixWin32-specific—not in
Kylix

Windows Win32-specific—not in
KylixWin32-specific—not in
Kylix

It is to be expected that the CLX implementation in Delphi 6

use similar filenames as currently used by Kylix.

Migrating RunTime Library usage
This section focuses primarily on differences in the runtime

library (RTL) and Object Pascal language features between

Delphi 5 and Kylix. The Delphi runtime library (system unit as

well as SysUtils) is almost the same in Kylix—almost because

some typical Win32 items have been removed (such as

RaiseLastWin32Error and Win32Check for example).

Interfaces
IInterface takes the place of IUnknown, but for backward

compatibility, IUnknown is defined as IInterface. IDispatch

requires COM and is gone in Kylix. Kylix introduces interface

RTTI and portable variants.

Portable Variants
The new Variant implementation is called Portable Variants

(implemented in the new Variants unit). These are variants that

are binary-compatible between Win32 and Linux and are now

implemented natively in the Delphi Object Pascal rather than

through any use of Win32-specific APIs.

The new variant:

- includes support for variant arrays and safe arrays

- provides support for registering custom variant data types

- allows for data coercion, data copying, operator overloading,

and method invocation.

Disks, directories, and files
Textfile operations and general file operations work differently

in Linux as compared with Windows because Linux works on a

case-sensitive file system. Areas in your application where

“TABLE.DB” and “table.db” are assumed to point to the same

table will have to be located and modified.

Also important is the fact that in Linux, directories use a forward

slash (/) while in Windows, they use a backward slash (\). Also,

there is no drive C: in Linux! These issues can be handled easily

by making sure you already use the PathDelim constant which is

defined in the SysUtils unit (and set to / in Kylix and \ in

Delphi). For additional help, you should use the DriveDelim and

PathSep constants, which are defined as follows:

const
 PathDelim = {$IFDEF MSWINDOWS} ‘\’;
{$ELSE} ‘/’; {$ENDIF}
 DriveDelim = {$IFDEF MSWINDOWS} ‘:’;
{$ELSE} ‘‘; {$ENDIF}
 PathSep = {$IFDEF MSWINDOWS} ‘;’;
{$ELSE} ‘:’; {$ENDIF}

Finally, the ExtractShortFileName function is gone in Kylix, as

are DiskSize and DiskFree.

File I/O
As a related topic, where Windows uses a CR+LF pair (carriage

return plus line feed) to mark the end of a line in text files, Linux

uses only the LF (line feed). There is a global variable called

DefaultTextLineBreakStyle in the System unit that is set to

tlbsLF on Linux, which means that line breaks are simply LF.

Kylix™

12

You can override the value of DefaultTextLineBreakStyle on a

file-by-file basis by calling the SetLineBreakStyle routine as

follows:

SetLineBreakStyle(logfile, tlbsCRLF);

This will read or write the logfile using CR+LF pairs as end-of-

line characters. Note that you cannot call this routine on an

already open file!

Migrating APIs
When migrating/porting applications from one platform to

another, it’s unavoidable to encounter code that operates at the

API level (the Windows unit versus the Libc unit). We’ll look at

a few examples, but it is best to avoid these kind of porting

issues.

API calls
The Windows API calls are located in the Windows unit and also

in related units that can be found in the

Delphi5\Source\RTL\Win directory—obviously not available

with Linux. The native Linux APIs are wrapped in the Libc,

Xlib, and Xpm units for Kylix and in the

Kylix\Source\RTL\Linux directory, which obviously is not

available in Delphi 5.

Windows messages
Apart from straight Windows APIs, you should also try to

minimize the number of Windows messages you send in your

application. PostMessage and SendMessage will not work in

Linux and will have to be replaced by calls to event handlers or

notifiers.

IniFiles
The Windows IniFile is ported to Linux. However, the Windows

Registry of course is not available with Linux. So while TIniFile

will work just fine, TRegIniFile will not and should be replaced

by TIniFile.

File time
Another platform-specific issue is the internal format in which

dates and times are stored. This includes file dates, stored in the

UNIX format. This is not a problem when conducting date

comparisons, such as file date against file date, and against Now

or Date. In fact, Date and Now are still using the offset 1 for

December 31, 1899—both in Delphi and Kylix. The TDateTime

representation is identical in Kylix and Delphi; the only

difference is the file date stamp.

Kylix™

13

Conclusion
The ability to migrate existing Delphi for Windows applications

to Kylix for Linux is very powerful. This capability is extended

and enhanced with Delphi 6 and true cross-platform

development using CLX.

After checking the availability of the used components in Kylix

(and possibly implementing workarounds already), you should

start your migrations by converting your project source files and

database tables, followed by possible in-depth modifications of

your Object Pascal source code. Most projects will port with

very few changes; some won’t port at all (such as with the

ActiveForms example). WebBroker projects will port with few

changes and generally work within hours, if not minutes, after

you start the migration.

Bob Swart (a.k.a. Dr.Bob - drbob@chello.nl) is a Delphi

consultant, trainer and Webmaster for Dr.Bob's Delphi Clinic

(http://www.drbob42.com). He is a freelance technical author

for The Delphi Magazine, UK-BUG Developer's Magazine, Delphi

Developer, Blaise, SDGN Magazine, DevX, TechRepublic, and has

written many chapters for programming books such as Delphi 4

Unleashed, C++Builder 5 Developer's Guide and the upcoming Kylix

Developer's Guide and Delphi 6 Developer's Guide. Bob has been a

regular speaker at the annual Borland conferences since 1993,

and he writes his own training material for the "Dr.Bob's Delphi

6 Clinic” training days.

Made in Borland®. Copyright © 2001 Borland Software Corporation. All rights reserved. All
Borland brand and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. All other marks are the property of their
respective owners. 11814

100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

http://www.borland.com/
http://www.drbob42.com)/

	Introduction
	Migrating Delphi™ Projects to Kylix™
	
	Why migrate?
	Migrating projects
	Single source
	Non-portable projects
	WebBroker™ targets

	Migrating database data to Linux
	
	Third-party ODBC support
	dbExpress™

	Moving from VCL to CLX
	
	Available components
	Suggested alternatives
	Components and units

	Migrating RunTime Library usage
	
	Interfaces
	Portable Variants
	Disks, directories, and files
	File I/O

	Migrating APIs
	
	API calls
	Windows messages
	IniFiles
	File time

	Conclusion

