
Migrating Borland Delphi
applications to the Microsoft .NET
Framework with Delphi 8

A Borland White Paper

By Bob Swart (aka Dr.Bob),

Bob Swart Training & Consultancy (http://www.drbob42.com)

February 2004

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

Contents

Introduction .. 3

Delphi 7 to Delphi for the Microsoft .NET Framework 3

VCL, VCL for .NET, and Windows Forms .. 4
Delphi 7 language and RTL not available in Delphi for Microsoft .NET 5
Unsafe code .. 7
New language features ... 8
Delphi 7 VCL components not in Delphi for the Microsoft .NET Framework 8

VCL to VCL for .NET .. 9

VCL applications .. 9
Ownerlist .. 10
ConvertIt .. 11
AppEvents .. 12

VCL for .NET deployment ... 13

Database applications.. 14
Data Access components .. 15
FishFact (BDE) .. 16
Frames\Db (Frames and BDE) ... 16
dbExpress ... 17

Web applications .. 19

Web Services .. 20

Miscellaneous .. 20

Summary.. 21

References... 22

 2

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

Introduction

With the release of Delphi 8 for the Microsoft .NET Framework (a.k.a. Delphi for .NET),

Borland has enabled Delphi developers to target another new platform, supporting the needs

of its developer base. Previous versions of Delphi can produce Microsoft Win32

applications (and with Borland Kylix, we can build Linux applications using the Delphi

language).

Delphi for .NET enables developers to write native .NET applications using Windows Forms

or Web Forms as the framework, or using VCL for .NET components.

This paper discusses the migration of Delphi applications for Win32 to the Microsoft .NET

Framework using Delphi 8 for the Microsoft .NET Framework. The difference between

Windows Forms and VCL for .NET is covered, as well as several sample migrations from

existing Delphi Win32 VCL applications to Delphi for .NET native .NET applications.

Delphi 7 to Delphi for the Microsoft .NET
Framework

Using Delphi for the Microsoft .NET Framework, we can compile applications that were

made in Delphi 7 or previous versions. The Delphi 8 box also includes Delphi 7 to produce

Win32 applications. If you want to produce source code that compiles with both Delphi 7 to a

Win32 target and with Delphi for .NET to a .NET target, then you might need to use compiler

IFDEFs inside your source code.

Delphi 7 contains the following compiler defines:

MSWINDOWS

WIN32

 3

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

Delphi for .NET contains the following compiler defines:

CLR

CIL

MANAGEDCODE

This means that you might want to write code like the following (using the Linux compiler

define to complete the Delphi platform alternatives):

project HelloWorld;
{$APPTYPE CONSOLE}

begin

{$IFDEF CLR} // Delphi for .NET

writeln('Hello, .NET world!');

{$ENDIF}

{$IFDEF WIN32} // Delphi 7

writeln('Hello, Win32 world!');

{$ENDIF}

{$IFDEF LINUX} // Kylix

writeln('Hello, Linux world!');

{$ENDIF}

end.

Note that we now have three possible platforms, so you should not use {$ELSE} to write

code that is not suited for one particular platform. Even if you are certain today that the code

is right, future support for other platforms might break your code. Always use specific

{$IFDEF} sections to write code for a specific platform.

VCL, VCL for .NET, and Windows Forms

When Delphi first shipped in 1995, the component library was called the Visual Component

Library. It contained more than just visual components, however. A number of these

components are platform-independent, and it was mainly the visual components that were

specifically bound to the Windows API and controls.

 4

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

When Kylix was introduced, a new library name was used: CLX (Component Library for

X-platform), which divided the components in BaseCLX, DataCLX, VisualCLX, and

NetCLX. Using Delphi 6 and 7, we can build visual applications using CLX (VisualCLX is

cross-platform for Linux and Win32) or VCL (only on Win32).

Now that Delphi has been ported to the Microsoft .NET Framework, the VCL has been ported

to .NET as well. This means that we can not only use native Windows Forms to produce

.NET applications with Delphi for .NET, but also VCL for .NET to produce .NET

applications. Because VCL for .NET uses the same classes and property/events interfaces that

the VCL for Win32 uses, Delphi Win32 projects can be migrated to Delphi for .NET with

considerable ease, which will be demonstrated in this paper).

CLX, VCL, and VCL for .NET are similar in terms of class names, property/event names, and

their usage. They all use an external stream file to place the property and event assignments:

for CLX an .xfm file, for VCL a .dfm file, and for VCL for .NET an .nfm file. In contrast, the

Windows Forms projects do not rely on a .nfm file, but assign all property and event handler

values in source code (hence the need for code folding in the IDE).

The VCL can be seen as a wrapper around the Win32 API, and the VCL for .NET can be seen

as a wrapper around the .NET Framework (or more specifically the Windows Forms classes).

The move from VCL to VCL for .NET is fairly painless and involves far less work than the

move from the Win32 API to the .NET Framework with Windows Forms. And the future

move to Longhorn's XAML (for the new Avalon presentation layer) will also be easier when

using VCL than when bound to a native layer such as the Win32 API or Windows Forms. In

short, using VCL extends the lifetime of your code.

For more information about VCL, CLX, and Windows Forms, see John Kaster's article at the

Borland Developer Network at http://bdn.borland.com/article/0,1410,29460,00.html .

Delphi 7 language and RTL not available in Delphi for Microsoft .NET

Although the move from VCL to VCL for .NET is fairly painless, several migration issues are

related to the differences in the Win32 and .NET platforms. These issues are related to the

fact that .NET code is executed by the CLR in a safe, managed way, so all potentially unsafe

 5

http://bdn.borland.com/article/0,1410,29460,00.html

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

features and code constructs in Delphi 7 must be replaced by safe counterparts in Delphi for

.NET.

Many Delphi 7 language features are no longer available in the Delphi for .NET environment

because they are unsafe or could result in unsafe code. The following table contains the most

important (most often used) of these language elements, along with suggested Delphi for

.NET alternatives.

Delphi 7 language feature Recommended Delphi 8 feature

Real48 Double

absolute, Addr, @ n/a

GetMem, FreeMem, ReAllocMem New and Dispose, or array structures

the Borland Pascal "object" type class type

Files of any type (including records) Streams, Serialization, databases

inline assembly or the asm keyword n/a

ExitProc n/a

FillChar, Move rewrite using for-loops

PChar String or StringBuilder 1

Table 1. Language features

1A string in .NET is not very efficient when you modify it several times (like concatenating substrings), in which
case you are better off using the StringBuilder class.

 6

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

Unsafe code
Delphi 7 can help you prepare Win32 applications for .NET, with a set of three new

warnings. Because they are disabled by default, they must be explicitly turned on using the

Project | Options - Compiler Warnings tab. The new set consists of warnings for unsafe

types, unsafe code, and unsafe typecasts. You can either enable these warnings in project

options, orthe preferred approachspecify them at the top of source files as follows:

{$WARN UNSAFE_TYPE ON}

{$WARN UNSAFE_CODE ON}

{$WARN UNSAFE_CAST ON}

You might have to add it to the top of every unit to produce the warnings.

For unsafe types, you'll be notified when you declare or use variables of type PChar, untyped

pointers, File of type, Real48, variant records, or when you use untyped var or out parameters.

Regarding unsafe code, you'll get warnings in Delphi 7 when you use absolute, Addr, Ptr, Hi,

Lo, Swap, BlockRead, BlockWrite, GetMem, FreeMem, and ReallocMem. Finally, any

typecast from a pointer or object to something that it may not be is considered worthy of a

warning as well.

When you compile unsafe types, code, or casts using Delphi 7 (with the three warnings

enabled), you'll get compiler warnings in the message view. Note that unsafe variables are

mentioned not only when you declare them, but also at every line where you use them.

If you cannot replace the unsafe code, type, or casts with safe Delphi for .NET code, then you

can mark your code as being unsafe for the time being, so that it compiles. This involves two

steps: first , mark the section of code inside {$UNSAFECODE ON} ... {$UNSAFECODE

OFF} compiler directives, and then mark the routine or method that holds the unsafe code,

cast with the unsafe keyword.

 7

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

As a consequence of using the unsafe keyword, the resulting application or package no longer

passes PEVerify2. However, the unsafe keyword helps you with a first migration (of unsafe

sections), which you can later rewrite using native safe .NET code.

New language features
Delphi for .NET has also introduced several new or extended language features to enhance the

way it conforms to the .NET standard, such as sealed classes, final methods, and strict private

and protected access specifiers. In order to avoid existing code breaking, the private and

protected keywords still allow "friends" from the same source file to access the internals of

their classes. To conform to the .NET standard, which specifies that private is closed for

anyone except the class instance itself, and protected is open only for the class (instance) itself

or its descendants, the keyword “strict” should be used before private and protected. This

keyword is not supported by Delphi 7 (and neither are sealed classes or final methods), so if

you use them, your source code is usable only with Delphi for .NET (until an update or new

version of the Win32 Delphi environment is released with support for the new language

features).

Delphi 7 VCL components not in Delphi for the Microsoft .NET Framework

A number of Delphi 7 VCL components are not present in the VCL for .NET shipping with

Delphi for .NET. The next section discusses the VCL for .NET details on a component-by-

component basis. The following categories are no longer available in VCL for .NET: dbGo

for ADO, WebBroker, InternetExpress, WebSnap, and XML support in the form of

TXMLDocument, XML Data Binding, and the XML Mapper with the associated

TXMLTransform components.

2 PEVerify is a .NET Framework SDK utility that can verify whether or not the code in a .NET assembly or
executable manipulates data in inappropriate ways that could corrupt data or compromise system security. Only
100% verifiable safe binaries pass the PEVerify test.

 8

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

VCL to VCL for .NET

Most Delphi 7 VCL components appear in the VCL for .NET component set that is included

with Delphi for .NET. The Component Palette is replaced by the Tool Palette, but similar

categories exist: Standard, Additional, Win32, System, Win 3.1, Dialogs, Data Access, Data

Controls, dbExpress, DataSnap, BDE, InterBase, InterBase Admin, Indy Clients, Indy I/O

Handlers, Indy Intercepts, and Indy Misc (see Figure 1).

 Figure 1. Delphi for .NET IDE with VCL for .NET component categories

Rather than list components available in VCL for .NET, the following is a list of components

that are part of the Delphi 7 VCL but are not available in the VCL for .NET of Delphi for

.NET.

VCL applications

All components from the Standard tab of the VCL appear in VCL for .NET. Missing from

the Additional tabare TChart, TActionManager, TActionMainMenuBar, TActionToolBar,

TXPColorMap, TStandardColorMap, TtwilightColorMap, and TCustomizeDlg components.

Further investigation shows that TActionManager is listed in the help and in the

Borland.Vcl.ActnMan namespace, but not in the Tool Palette. Also note that a free VCL for

 9

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

.NET version of TeeChart "Standard" will be available at the Steema Web site at

http://www.steema.com/.

From the Win32 tab, all components appear in VCL for .NET. Missing from the System tab

are OleContainer, DdeClientConv, DdeClientItem, DdeServerConv, and DdeServerItem

components. Even the Win 3.1 tab from VCL is present in VCL for .NET, with the exception

of the TDBLookupList and TDBLookupCombo components. Finally, the Dialogs tab is

completely present in VCL for .NET.

Based on these components, we can pick a number of the standard sample applications that

ship with Delphi 7 and open them with Delphi for .NET.

Ownerlist
We can start with the sample application in the Delphi7\Demos\Ownerlist directory,

consisting of four files: FontDraw.dpr, FontDraw.res, FontList.pas, and FontList.dfm. Delphi

for .NET can open .bdsproj files (the Delphi for .NET project files) as well as Win32-style

.dpr project files. If you open FontDraw.dpr in the Delphi for .NET IDE, you can immediately

compile the project to a native .NET executable. You might notice warnings, which are

mainly platform-specific (caused because the VCL is based on the Windows platform). But

these warnings are nothing to worry about; the resulting application is still a native .NET

executable, as can be seen in Figure 2:

Figure 2: OwnerDraw sample application for .NET

 1 0

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

Without a single change in the source code, we can migrate this sample project from Delphi 7

to Delphi for .NET. The new executable is a safe executable, which can be proved by running

it through PEVerify without errors. When you close the project, a FontDraw.bdsproj is

generated, and some configuration settings are written to the FontDraw.cfg file. Fortunately,

these new settings do not prevent Delphi 7 from being able to compile the same project.

One change made by Delphi for .NET to the main unit is the addition of the

System.ComponentModel unit to the uses clause of the interface section. Slightly modify this

uses clause if you want to keep a single-source cross-platform project. Place the

System.ComponentModel unit in a {$IFDEF CLR} section, like this:

uses

Windows, Classes, Graphics, Forms, Controls,

{$IFDEF CLR} System.ComponentModel, {$ENDIF}

StdCtrls;

This single change is something you must perform for all units migrating from Delphi 7 to

Delphi for .NET, for which you want to enable compatibility with Delphi 7 (to produce a

Win32 executable as well as a .NET executable from the same project source code).

ConvertIt
The Ownerlist sample application worked easily and took only one manual step. Let's take

another example, the first one used to demonstrate the capabilities of the Delphi for .NET

preview command-line compiler: ConvertIt. The Demos\ConvertIt directory contains five

files: ConvertIt.dpr and ConvertIt.res, ConvertItUnit.pas and ConverItUnit.dfm, and a

EuroConv.pas unit.

This project also loads immediately in the Delphi for .NET IDE, and results in another native

.NET executable (Figure 3).

 1 1

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

Figure 3: ConvertIt sample application for .NET

AppEvents
Let's end the VCL sample applications with a more complex application in the

Delphi7\Demos\AppEvents directory. Again, this sample application works as expected when

loaded in the Delphi for .NET IDE and run as a native .NET application (Figure 4).

 Figure 4: AppEvents sample application for .NET

 1 2

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

VCL for .NET deployment

Before we move on to sample applications with database support, let’s look at deployment of

a Delphi for .NET applicationspecifically, a VCL for .NET application. If we take the last

sample application, and look inside the Project Manager, the reference node of the project

lists only the System.Drawing.dll assembly. This is the only assembly the AppEvents sample

application for .NET requires. All VCL for .NET units are compiled into the executable,

which as a consequence is about 1.5 MB.

On the bright side, you need to deploy only the AppEvents executable (the

System.Drawing.dll assembly exists on any Microsoft .NET Framework installation), and no

additional VCL for .NET assemblies. In some situations, however, it might be more desirable

to deploy a smaller AppEvents executable and rely on VCL for .NET functionality in VCL for

.NET assemblies that are already (or at the same time) deployed on the target machine. In that

respect, .NET assemblies can be seen as runtime packages. Use this functionality when the

project is modified frequently and the distribution of a small updated executable is more

efficient than the distribution of a larger monolithic execution.

The developer must choose, but the default "setting" for new VCL for .NET applications is to

compile executables without linking in the VCL for .NET assemblies (in other words: small

executables that need the VCL for .NET assemblies to be deployed as well). When migrating

VCL projects to Delphi for .NET, however, the IDE will not add the VCL for .NET

assemblies to the list of references, and as a result the VCL for .NET units will be compiled

into a monolithic executable.

In order to change a migrated VCL for .NET project, manually add the VCL for .NET

assemblies as references to the project (specifically the Borland.Delphi.dll and

Borland.Vcl.dll), and recompile the project. This results in an AppEvents sample application

for .NET of only 12 KB, albeit one that requires the Borland.Delphi.dll and Borland.Vcl.dll

assemblies to be deployed alongside.

Next, we focus on more-difficult applications with database support.

 1 3

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

Database applications

Many new powerful technologies in the Microsoft .NET Framework are available to

developers. Some of these, such as ADO.NET, make current Win32 technologies either

unnecessary or obsolete. This section describes the data access technologies offered by Delphi

7 and explains whether and how they are available to use in VCL for .NET applications with

Delphi for .NET.

The following table gives an overview of the available data access technologies in Delphi 7,

and lists the VCL for .NET counterparts in Delphi for .NET:

Delphi 7 Delphi 8

Borland Database Engine (BDE) (dBASE,
Paradox)

BDE (dBASE, Paradox)

SQL Links Deprecated

Borland dbExpress (InterBase, Microsoft
SQL Server, Oracle, IBM DB2,
Informix)

dbExpress (InterBase, SQL Server, Oracle,
IBM DB2, Informix, SQL Anywhere)

Borland IBExpress (IBX) IBExpress (IBX)

Borland dbGo for ADO not available at this time

Table 2: Data-access technologies

Apart from dbGo for ADO, which was not ported to .NET, we have the choice of BDE (SQL

Links is deprecated (see http://bdn.borland.com/article/0,1410,28688,00.html) but local BDE

for dBASE and Paradox tables is still present), dbExpress, and InterBase Express (IBX).

The sample applications from Delphi 7 that illustrate this, and are migrated to Delphi for

.NET with little to no modifications, are Demos\Db\FishFact (BDE) and Demos\Frames\Db

(BDE). Apart from these two sample applications, we'll build a small dbExpress application

in Delphi 7 and move it over to Delphi for .NET.

Also, for reporting purposes, Rave Reports is available with Delphi for .NET.

 1 4

http://bdn.borland.com/article/0,1410,28688,00.html

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

One category of VCL components that wasn't migrated to VCL for .NET is the Decision

Cube. Because the source code is included with Delphi 7 (at least in the Enterprise edition),

you can attempt to migrate these components yourself if you desperately need them

Data Access components
In the Data Access category, the TXMLTransform, TXMLTransformProvider, and

TXMLTransformClient components are not included with Delphi for .NET. Support for XML

in .NET can be found in the System.Xml namespace.

The Data Controls category is complete, with the exception of the TDBChart component.

Although the BDE is still supported in .NET, this only covers the local table components

TTable, TQuery, TDatabase, TSession, and TBatchMove, and not the SQL Links specific

components TStoredProc, TUpdateSQL, TNestedTable (which are therefore not available in

the Tool Palette, although they can be found in the VCL for .NET unit

Borland.Vcl.DBTables.pas).

In the dbExpress category, components from VCL are present in VCL for .NET with the

exception of TSimpleDataSet.

The InterBase (for InterBase Express) and InterBase Admin categories are complete, with the

exception of the TIBEvents component from the InterBase tab, and the TIBInstall and

TIBUninstall components from the InterBase Admin tab.

The DataSnap category in VCL for .NET contains only the TDCOMConnection component,

and not TSocketConnection, TSimpleObjectBroker, TWebConnection, TConnectionBroker,

TSharedConnection, and TLocalConnection. Note that TConnectionBroker can be found in

Borland.Vcl.DBClient.pas, TSharedConnection in Borland.Vcl.MConnect.pas, and

TLocalConnection in Borland.Vcl.TConnect.pas.

Using the TDCOMConnection component in Delphi for .NET, developers can build DataSnap

clients connecting to Win32 Delphi DataSnap servers, which is another way the Win32 and

.NET worlds are bridged.

 1 5

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

FishFact (BDE)
The FishFact sample application, using a local BDE Paradox table, available even in Delphi 1,

can be opened in Delphi for .NET and compiled without problems. The resulting.NET sample

application can be seen in Figure 5. This 16-bit project can be compiled with Delphi for .NET

to a native .NET executable without modifications!

 Figure 5: FishFact BDE sample application for .NET

When migrating BDE applications with Delphi for .NET to the .NET Framework, you must

be aware that the underlying data access architecture is still the Win32 version of the BDE

itself. So when it comes to deploying the VCL for .NET application, you must deploy the

BDE with it.

Frames\Db (Frames and BDE)
The Frames\Db sample application illustrates the use of BDE tables in combination with the

support for Frames in VCL for .NET. Frames, an important feature of VCL for .NET, enable

developers to design frames as reusable "jigsaw" GUI elements, each consisting of controls to

produce a consistent, reusable, and easily maintainable collection of screen elements.

 1 6

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

Delphi 7 projects that rely on frames migrate to Delphi for .NET without problems, as you

can see in Figure 6 with the BDE frames sample application.

Figure 6: BDE FishFact and Frames sample application for .NET

The BDE can be used in VCL for .NET applications to work with local dBASE and Paradox

files. In order to work with database management systems (DBMSs) such as InterBase,

Oracle, Microsoft SQL Server, IBM DB2, or Informix, you need to use a different data-

access technology. For InterBase, the choice can be IBExpress (IBX) or dbExpress, but for

others, the only VCL for .NET data access technology available is dbExpress.

dbExpress
Many dbExpress sample applications shipping with Delphi 7 are based on CLX for cross-

platform compatibility between Delphi 7 and Kylix 3. This means some uses clauses must be

 1 7

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

changed (a bit more work compared to VCL applications), and that we end with an

application using IFDEFs that can be compiled with Delphi 7, Delphi for .NET, and Kylix.

In order to build a new dbExpress application for Win32, start Delphi 7 and create a new VCL

application. Add a TSQLConnection component from the dbExpress tab of the Component

Palette onto the form. Right-click on this component to start the Connections Editor, and edit

the settings to connect to the IBLocal InterBase database (username sysdba, password

masterkey). Place a TSQLDataSet component and point the SQLConnection property to the

TSQLConnection component. Now use the Query Editor to specify the following SQL

statement for the CommandText property:

SELECT * FROM EMPLOYEE

Next, add a TDataSetProvider component on the form, and point its DataSet property to the

TSQLDataSet component. Place a TClientDataSet component on the form and point its

ProviderName property to the TDataSetProvider component. Finally, add a TDataSource

component and point its DataSet property to the TClientDataSet component.

We can now use data-aware controls, such as the TDBGrid component. Make sure the

DataSource property is pointing to the TDataSource component. You can get live data at

design-time if you open the ClientDataSet (by setting Active to True).

In order to ensure that the changes in the DBGrid are posted back to the InterBase table, write

one line of code in the OnAfterPost and OnAfterDelete event handlers, namely:

procedure TForm1.ClientDataSet1AfterPostOrDelete(DataSet:
TDataSet);

begin
 (DataSet as TClientDataSet).ApplyUpdates(0)
end;

Now, we can compile and run the application. After you've saved the project in Delphi 7, you

can open the project in Delphi for .NET and compile it to a native .NET executable without

errors or warnings.

 1 8

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

For a more complex sample application, you can use a VCL data module, which also migrates

to VCL for .NET without problems. Like Frames, Data Modules offer VCL for .NET

developers a powerful means to group and manage components that belong together within a

single container (either the frame or the data module).

Web applications

Many powerful new technologies are available within the Microsoft .NET Framework. Some

of these new technologies, such as ASP.NET, make current Win32 technologies either

unnecessary or obsolete. This section discusses the technologies available to build Web server

applications offered by Delphi 7, and explains if and how they are available to use in VCL for

.NET applications with Delphi for .NET.

The ASP.NET technology of the .NET Framework enables developers to build Web server

applications that can be visually designed and have the deployment ease of a CGI executable,

while retaining the speed and efficiency of an ISAPI DLL. This means that the need to

migrate WebBroker, InternetExpress, or WebSnap applications to the .NET world is expected

to be nonexistent. Maintain those web server projects in Delphi 7, and start new development

using Delphi for .NET and ASP.NET.

For more information about ASP.NET development with Delphi for .NET, see the BDNtv

Flash movie at http://bdn.borland.com/article/0,1410,31890,00.html , which demonstrates the

development of an ASP.NET Web application using the Borland Data Provider for InterBase

and the Borland DB Web Controls. This BDNtv movie also shows how easy it can be to

migrate a Delphi Win32 application to the Microsoft .NET Framework with Delphi for .NET

Delphi 7 included IntraWeb 5, a third-party tool, which is migrated to .NET and available as

IntraWeb for .NET. Existing IntraWeb applications can be expected to migrate to IntraWeb

for .NET with few to no problems. Note, however, that IntraWeb for .NET is not included

with Delphi for .NET.

 1 9

http://bdn.borland.com/article/0,1410,31890,00.html

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

The Indy tabs of VCL are all accounted for in VCL for .NET, so VCL applications that use

the Indy components should migrate over to VCL for .NET without problems.

Web Services

Delphi 6 introduced support for building and consuming Web Services using Borland's

implementation of the SOAP protocol, which is also used in Kylix 2 and higher (and

C++Builder 6). The .NET Framework has support for SOAP and Web Services built in using

the ASP.NET technology. As a result, Delphi for .NET makes use of the native .NET

functionality to build ASP.NET Web Services and consume Web Services.

Delphi for .NET on-line help contains two sections entitled "Porting Web Service Clients to

Delphi 8 for .NET" and "Porting a Web Service Client Application from Delphi 7 to Delphi 8

for .NET" that can be read for more information about migrating Web Service client

applications from Delphi 7 to Delphi for .NET.

Miscellaneous

Three VCL component categories from Delphi 7 that are not immediately available in Delphi

for .NET are the ActiveX, COM+, and Servers tabs. Although these components are not

installed by default, you can import COM and ActiveX components by adding them as

reference to your project, as you can see in the dialog box in Figure 7.

 2 0

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

 Figure 7: COM imports

Note that this means that your managed, safe .NET executable will use COM Interop to use

an unmanaged (and potentially unsafe) COM object. This solution can be used for migration

purposes, but in the long run aim for a fully managed, safe .NET executable.

Finally, although the Samples category isn't listed in the Tool Palette of Delphi for .NET, the

components can be found in the Demos\Vcl\Samples directory, including the

Borland.Vcl.Samples package.

If that's not enough, you can also use standard .NET controls in VCL for .NET applications.

Read an article about doing so at http://bdn.borland.com/article/0,1410,31886,00.html .

Summary

From VCL you can migrate to VCL for .NET with considerable ease. For new .NET

applications, you can choose between VCL for .NET and Windows Forms. Using VCL for

 2 1

http://bdn.borland.com/article/0,1410,31886,00.html

Migrating Borland Delphi applications to the Microsoft .NET Framework with Delphi 8

 2 2

.NET, you can use the BDE, dbExpress, IBX, or DataSnap components. Using Windows

Forms, you can choose ADO.NET or Borland Data Provider for .NET components.

For Web development, WebBroker, InternetExpress, and WebSnap technologies are replaced

by the ASP.NET framework, which supports ASP.NET Web forms and Web Services.

IntraWeb also has migrated to .NET as a third-party solution.

References

“Delphi 8 ASP.NET Development, and Win32 migration,” John Kaster (presented by Troy

Kitch)

http://bdn.borland.com/article/0,1410,31890,00.html

“Using standard .NET controls in VCL .NET applications with Delphi 8,” Tim Jarvis and

John Kaster

http://bdn.borland.com/article/0,1410,31886,00.html

“Overview of the VCL for .NET,” John Kaster

http://bdn.borland.com/article/0,1410,29460,00.html

“The Future of the Borland Database Engine (BDE) and SQL Links,” John Kaster

http://bdn.borland.com/article/0,1410,28688,00.html

Made in Borland® Copyright © 2004 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. Microsoft,
Windows, and other Microsoft product names are trademarks or registered trademarks of Microsoft Corporation in the U.S. and
other countries. All other marks are the property of their respective owners. Corporate Headquarters: 100 Enterprise Way, Scotts
Valley, CA 95066-3249 • 831-431-1000 • www.borland.com • Offices in: Australia, Brazil, Canada, China, Czech Republic,
Finland, France, Germany, Hong Kong, Hungary, India, Ireland, Italy, Japan, Korea, Mexico, the Netherlands, New Zealand,
Russia, Singapore, Spain, Sweden, Taiwan, the United Kingdom, and the United States. • 21550

http://bdn.borland.com/article/0,1410,31890,00.html
http://bdn.borland.com/article/0,1410,31886,00.html
http://bdn.borland.com/article/0,1410,29460,00.html
http://bdn.borland.com/article/0,1410,28688,00.html

	Introduction
	Delphi(7 to Delphi(for the Microsoft(.NET Framework
	VCL, VCL for .NET, and Windows(Forms
	Delphi(7 language and RTL not available in Delphi(for Microsoft(.NET
	Unsafe code
	New language features
	Delphi(7 VCL components not in Delphi(for the Microsoft(.NET Framework

	VCL to VCL for .NET
	VCL applications
	Ownerlist
	ConvertIt
	AppEvents

	VCL for .NET deployment
	Database applications
	Data Access components
	FishFact (BDE)
	Frames\Db (Frames and BDE)
	dbExpress

	Web applications
	Web Services
	Miscellaneous
	Summary
	References

