
VisiBroker® 3.3
for Delphi™ 5

By Bob Swart

Introduction

When Delphi™ 5 Enterprise shipped, it had limited

support for CORBA® (no IDL2Pas compiler for example).

In December 1999, VisiBroker® 3.3 for Delphi 5 was

made available as a free download and plug-in for Delphi

5 Enterprise. It contained a somewhat limited IDL2Pas

and support for CORBA exceptions, only on the client's

side.

Now, one year later, Borland has released the final

version of VisiBroker 3.3 for Delphi 5. It includes an

enhanced IDL2Pas, including a Wizard, and full support

for both client and server-side CORBA exceptions. In this

white paper, I'll explore the enhanced features that the

new VisiBroker for Delphi 5 brings us, and show how

CORBA is done the Delphi way…

Table of Contents
CORBA 2

No More Type Library 2

Interface Definition 2

IDL2Pas Wizard 3

CORBA Server 5

Server Skeletons 6

CORBA Exceptions 8

CORBA Client 9

Using Client Stubs 11

VisiBr o k er®

VisiBroker ®

2

CORBA®

The Common Object Request Broker Architecture,

simply called CORBA, is a multi-tier communication

protocol. In other words, using CORBA, two or more

applications (or tiers) can communicate with each other.

Usually, a CORBA architecture defines a CORBA server

and CORBA clients (that communicate with the server).

The main advantage of CORBA is, for example, COM or

Java™, is the fact that CORBA is cross-platform (unlike

COM) and cross-language (unlike Java). Specifically, a

CORBA client on Windows® can communicate with a

CORBA server on Linux® or even a mainframe. The way

in which CORBA can be cross-platform and cross-

language, is by making sure that the interface

specifications (the "contact" between the client and the

server) are defined in a special uniform language, called

Interface Definition Language (IDL). In IDL, you can

define modules, interfaces, methods and much more (as

you will see in this white paper). The interface, defined

in the IDL file, must be compiled to a native

representation for both the client and the server, resulting

in server skeleton files (needed to implement the

methods) and client stubs (that can call the methods).

There have been IDL2Cpp and IDL2Java compilers for

years, and the first IDL2Pas from Borland shipped in

December, 1999, but contained mainly client-side

CORBA support. Now, with the new IDL2Pas, Borland

finally has full client and server support for CORBA in

Delphi 5 Enterprise.

No More Type Library

The free VisiBroker 3.3 for Delphi 5 (Enterprise) that

shipped in December 1999 could generate client stubs for

CORBA clients, and contained client-side support for

CORBA exceptions, but did not have any server-side

support. We still needed to use either the Delphi 5 Type

Library to create a new CORBA server, or rely on a

CORBA server written in another language (and use the

corresponding IDL file to let VisiBroker for Delphi

generate the CORBA client stubs).

The best news of the year so far (until the launch of

Kylix™, the first native Rapid Application Development

(RAD) environment for the Linux operating system (OS)).

is the fact that the new VisiBroker 3.3 for Delphi 5 now

also contains full CORBA server support. No more Type

Library, but a full functional IDL2Pas compiler that takes

your IDL (interface definition language) file and turns it

into client stubs or server skeletons.

Interface Definition

The IDL file contains the interface definition between the

CORBA server and the CORBA clients. For this white

paper, I've constructed a somewhat artificial IDL file that

will cover most of the existing and new features and

enhancements of VisiBroker 3.3 for Delphi 5. The

following IDL file uses interfaces, methods, interface

inheritance, structs, exceptions, sequences, enumerated

types, etc.

module DrBob42
{
 interface Rates
 {
 float interest_rate();
 };

 interface Account
 {
 float balance();
 float get_rates(in Rates myRates);
 };

 struct AccountError
 {

 float Balance;
 string ErrorMessage;
 };

 exception AccountException
 {
 AccountError Error;
 };

 interface MyAccount: Account
 {
 void deposit(in float amount);
 void withdraw(i n float amount)
raises(AccountException);
 };

VisiBroker ®

3

 typedef string Identifier;

 enum EnumType
 {
 first,
 second,
 third
 };

 struct StructType
 {
 short age;
 long l;
 Identifier name;
 };

 union UnionType switch (long)
 {
 case -1: short age;
 case 0: long l;
 case 1: Identifier i;
 };

 const unsigned long ArraySize = 3;

 typedef StructType StructArray[ArraySize];

 t y p e d e f s e q u e n c e < S t r u c t T y p e >
StructSequence;

 interface ADT
 {
 void test(in Identifier one, in EnumType
two, in StructType three,
 i n UnionType four, in StructArray
five, in StructSequence six);
 };
};

Let's now describe the meaning of the interfaces defined

in the IDL file. First, we have an interface called Rates,

which has one method to return the current interest_rate.

This is no big deal, but in the second interface, we make

use of the first interface, by passing it as argument to the

get_rates method (so the internals of get_rates will have

to use the Rates interface to call the Rates.interest rate

method).

The third construct inside the module is a struct

AccountError with a float to hold the current Balance and

a string to hold an ErrorMessage. This struct will be used

in an error situation, which is why I've embedded it

inside an exception type called AccountException - the

fourth construct of module DrBob42.

The fifth construct is the most advanced: using interface

inheritance and methods (possibly) raising CORBA

exceptions. Regarding interface inheritance: it's possible

to use multiple interface inheritance (or interface multiple

inheritance, depending on how you look at it), but I

always try to avoid multiple inheritance wherever I can,

including inside IDL files.

After the interface inheritance example, the remainder of

the IDL file contains the several data type definitions that

are supported by IDL2Pas: from simple typedefs,

enumerated types, structs and unions to arrays and

sequences. And of course, the interface ADT which

declares one method test that handles all six Array Data

Types (ADT) of the data types defined previously. In

short: IDL2Pas is capable of handling just about anything

you can imagine or may need to define in your interface

definition.

IDL2Pas Wizard

After we've installed VisiBroker for Delphi 5, you can find

both the IDL2Pas.bat and JAR files in the BIN directory of

Delphi 5, as well as a number of interesting examples in

the Demos\IDL2Pas directory and new documentation in

the Docs\IDL2Pas directory. Finally, check out the

Sources\RTL\CORBA directory for a number of new files

(CORBA.PAS and ORBPAS30.PAS), especially the

IDL2Pas.pdf file in the DOCS directory (the VisiBroker for

Pascal Reference Guide); which is quite interesting to

read.

Now then, assuming you've purchased,downloaded, or in

some other way acquired the new VisiBroker 3.3 for

Delphi 5, start your engines (read: Delphi 5 Enterprise)

and you'll find a new tab in the Object Repository called

"CORBA". Inside, there are two icons for two new project

Wizards: one for a CORBA Client Application and one for

a CORBA Server Application (see Figure 1).

VisiBroker ®

4

Figure 1. The CORBA tab of the Object Repository.

Since the CORBA Server is usually the place to start,

select the CORBA Server Application icon and double-

click on it or click on the OK button. This will bring up

the whole new IDL2Pas Wizard in which you can simply

add all IDL files that need to be part of your CORBA

Server:

Note from Figure 2 that we can either select a Console or

a Windows Application for our CORBA Server. The

difference should be obvious, and I've selected a Console

Application here (but feel free to start playing with a

CORBA Server Application for Windows first, if you like).

We'll get the same choice (console vs. windows) when

we create the CORBA Client, and since you're not limited

to just one CORBA Client (or CORBA Server for that

matter), the choice is arbitrary: you could create all kinds,

as we'll see in this white paper.

The Options tab of the IDL2Pas Wizard contains a

number of helpful options (as can be seen in Figure 3).

They range from adding the generated .pas, files to the

current project (the alternative is that you may just want

to run IDL2Pas on one or more IDL files to generate the

client stubs and server skeletons), to generating the

different kinds of output files (skeleton units,

implementation units), and generating or retaining

comments in the generated files.

A very helpful and important option is the "Overwrite

implementation Units" option (unchecked in Figure 3).

When this option is checked, the implementation units -

containing the source code you just wrote with your

implementation - will be overwritten when you run

IDL2Pas. This is not usually what you want to have

happen (or at least you should be conscious of that fact

that it will happen if you've selected this option).

VisiBroker ®

5

Figure 3. IDL2Pas CORBA Server Options

Fortunately, the settings of all these options are saved

inside the defproj.dof file in the Delphi5\Bin directory, so

you only have to specify your favorite settings once, and

they'll be the same every time.

When creating CORBA Delphi Clients, the three options

concerning the skeleton and implementation units will be

disabled (these are irrelevant for CORBA Clients, of

course), as you can see in Figure 6. Otherwise, the

IDL2Pas Create Client Dialog is exactly the same as the

IDL2Pas Create Server Dialog. Before we start on the

CORBA client, let's work on the CORBA server first.

CORBA® Server

The result of running IDL2Pas on the DrBob42.idl file

consists of four files: DrBob42_i.pas (with the interface

definitions), DrBob42_c.pas (with the client stubs - the

code the client application can use/call), DrBob42_s.pas

(with the server skeletons) and finally, DrBob42_impl.pas

with the implementation of the skeletons by us. And

this last file is the one you usually don't want the IDL2Pas

to accidentally overwrite the next time it processes the

IDL file. The DrBob42_impl.pas file contains the

ObjectPascal class definitions for TRates, TAccount,

TMyAccount and TADT that we need to implement.

These are also the four CORBA classes we need to create

in the server itself, so the clients can talk to them. Note

that AccountError and AccountException are defined in

DrBob42_i.pas, and require no further implementation

(both are just "dumb" structures).

About the CORBA Server: apart from the aforementioned

four generated files, the IDL2Pas Wizard also generates a

new Delphi project, which has the generated files in its

uses clause, and also contains some comments

(examples) to guide you into writing your own CORBA

Server initialization code.

Figure 4. CorbaServer generated code in the Delphi 5 IDE

In our case, we need to change the main project file from

the generated example as seen in Figure 4, and make

sure that instances are created of Rates, Account,

MyAccount and ADT (which are, in fact, merely aliases

for TRatesSkeleton, TAccountSkeleton,

TMyAccountSkeleton and TADT). Inside the

DrBob42_s.pas file (containing the server skeletons), we

see TRatesSkeleton, TAccountSkeleton,

TMyAccountSkeleton and TADT classes, each with the

same constructor, Create, that takes two arguments: the

first for an instance name (which can be anything), and

the second for an instance of the CORBA interface itself):

VisiBroker ®

6

constructor Create(const InstanceName:
string; const Impl: Rates);

Once all four CORBA classes have been created with help

of their skeleton, we need to call the ObjIsReady method

of the BOA (Basic Object Adaptor) to tell the BOA that

this CORBA object is ready to be used by CORBA clients.

Finally, once all CORBA Objects have been registered as

being ready, we need to call the ImplIsReady method of

the BOA to tell it that the entire CORBA Server

application is ready to go into the "waiting loop". This

waiting loop means that it looks like the CORBA Server is

now hanging, while in fact it is waiting for, receiving and

responding to CORBA requests (from CORBA Clients),

not unlike the Windows messaging loop we all know.

When you terminate the CONSOLE application, the

waiting loop is ended and the CORBA server is closed.

For a Windows CORBA application, the call to

BOA.ImplIsReady is not needed, since the Windows loop

itself will make sure the CORBA server can receive and

respond to CORBA requests (until the Windows CORBA

Server application is closed, of course).

The resulting CORBA Server application for our IDL file

can be seen in Listing 1.

program CorbaServer;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 CORBA,
 DrBob42_c in 'DrBob42_c.pas',
 DrBob42_i in 'DrBob42_i.pas',
 DrBob42_impl in 'DrBob42_impl.pas',
 DrBob42_s in 'DrBob42_s.pas';

var
 // The CORBA server Skeletons
 Rate: Rates;
 Acct: Account;
 MyAcct: MyAccount;
 ADT: TADT;

begin
 CorbaInitialize;

 // Add CORBA server Code Here
 writeln('Init');
 Rate := TRatesSkeleton.Create('Rate',
TRates.Create);

 writeln('Server Rate Object
Created...');
 Acct :=
TAccountSkeleton.Create('Account',
TAccount.Create);
 writeln('Server Account Object
Created...');
 MyAcct :=
TMyAccountSkeleton.Create('MyAccount',
TMyAccount.Create);
 writeln('Server MyAccount Object
Created...');
 ADT := TADT.Create('ADT', TADT.Create);
 writeln('Server ADT Object Created...');
 writeln;

 // Make Objects Ready
 BOA.ObjIsReady(Rate as _Object);
 write('And ');
 BOA.ObjIsReady(Acct as _Object);
 write('the ');
 BOA.ObjIsReady(MyAcct as _Object);
 writeln('Server ');
 BOA.ObjIsReady(ADT as _Object);
 writeln('is ready...');

 BOA.ImplIsReady;
end.

Listing 1. CORBA Console Server Application

Server Skeletons

Now that we've created our CORBA Objects, it's time to

actually implement them (otherwise the CORBA Server

won't do much good), so let's turn to the

DrBob42_impl.pas file. The header of this file, like all

four generated files, explains that the file was actually

generated by the "Inprise VisiBroker IDL2Pas CORBA IDL

compiler" (The final product will contain Borland, instead

of Inprise, in the name). All generated files also contain a

warning that says "Please do not edit the contents of this

file. You should instead edit and recompile the original

IDL file" including the location of that IDL file.

Confusingly, this warning also appears in the

DrBob42_impl.pas file, the one - you guessed it - we

need to modify to include our implementation. Oops!

Fortunately, the DrBob42_impl.pas file also contains

several cues to tell us to insert User variables and User

code at the right places. Once all these commented cues

have disappeared (and been replaced by actual code),

your implementation is probably completed as well. If we

VisiBroker ®

7

store the interest_rate and balance in shared properties

(instead of retrieving them from a real database, for

example), and leave the TADT implementation

untouched, then our minimum CORBA Skeleton

implementation can be seen in Listing 2.

Please note that this is a simple implementation, with no

consideration of multi-threading issues (when more than

one CORBA client is connected to the same CORBA

server, each talking with the same global account).

unit DrBob42_impl;

{This file was generated on 29 Dec 2000 10:32:07
GMT by version 03.03.03.C1.06}
{of the Inprise VisiBroker IDL2Pas CORBA IDL
compiler. }

{Please do not edit the contents of this file.
You should instead edit and }
{recompile the original IDL which was located in
the file }
{C:\DrBob42\Drbob42.idl.
}

{Delphi Pascal unit : DrBob42_impl
}
{derived from IDL module : DrBob42
}

interface
uses
 SysUtils,
 CORBA,
 DrBob42_i,
 DrBob42_c;

type
 TRates = class;
 TAccount = class;

 TMyAccount = class;

 TADT = class;

 TRates = class(TInterfacedObject,
DrBob42_i.Rates)
 protected
 finterest_rate: Single;
 public
 constructor Create;
 function interest_rate: Single;
 end;

 TAccount = class(TInterfacedObject,
DrBob42_i.Account)
 protected
 fbalance: Single;
 public
 constructor Create;
 function balance: Single;

 function get_rates(const myRates:
DrBob42_i.Rates): Single;
 end;

 TMyAccount = class(TInterfacedObject,
DrBob42_i.MyAccount)
 protected
 fbalance: Single;
 public
 constructor Create;
 procedure deposit(const amount: Single);
 procedure withdraw(const amount:
Single);
 function balance: Single;
 function get_rates(const myRates:
DrBob42_i.Rates): Single;
 end;

 TADT = class(TInterfacedObject,
DrBob42_i.ADT)
 protected
 {******************************}
 {*** User variables go here ***}
 {******************************}
 public
 constructor Create;
 procedure test(const one:
DrBob42_i.Identifier;
 const two:
DrBob42_i.EnumType;
 const three:
DrBob42_i.StructType;
 const four:
DrBob42_i.UnionType;
 const five:
DrBob42_i.StructArray;
 const six:
DrBob42_i.StructSequence);
 end;

 TSeqAccount = class(TInterfacedObject,
DrBob42_i.SeqAccount)
 protected
 {******************************}
 {*** User variables go here ***}
 {******************************}
 public
 constructor Create;
 function balance(const mySeq:
DrBob42_i.IntSeq): Single;
 end;

implementation
uses
 Dialogs;

constructor TRates.Create;
begin
 inherited;
 finterest_rate := 7; // seems like a nice
interest rate
 ShowMessage('TRates.Create');
end;

VisiBroker ®

8

function TRates.interest_rate: Single;
begin
 Result := finterest_rate;

end;

constructor TAccount.Create;
begin
 inherited;
 fbalance := 0; // balance starts empty
 ShowMessage('TAccount.Create');
end;

function TAccount.balance: Single;
begin
 Result := fbalance;
end;

function TAccount.get_rates(const myRates:
DrBob42_i.Rates): Single;
begin
 Result := myRates.interest_rate
end;

constructor TMyAccount.Create;
begin
 inherited;
 fbalance := 0;
 ShowMessage('TMyAccount.Create');
end;

procedure TMyAccount.deposit(const amount:
Single);
begin
 fbalance := fbalance + amount;
end;

procedure TMyAccount.withdraw(const amount:
Single);
begin
 fbalance := fbalance - amount;
end;

function TMyAccount.balance: Single;
begin
 Result := fbalance;
end;

function TMyAccount.get_rates(const
myRates: DrBob42_i.Rates): Single;
begin
 Result := myRates.interest_rate
end;

constructor TADT.Create;
begin
 inherited;
 { *************************** }
 { *** User code goes here *** }
 { *************************** }
end;

procedure TADT.test(const one:
DrBob42_i.Identifier;
 const two:
DrBob42_i.EnumType;
 const three:
DrBob42_i.StructType;
 const four:
DrBob42_i.UnionType;
 const five:
DrBob42_i.StructArray;
 const six:
DrBob42_i.StructSequence);
begin
 { *************************** }
 { *** User code goes here *** }
 { *************************** }
end;

initialization

end.

Listing 2. CORBA Server Skeleton Implementation

Note that the Create constructors in Listing 2 all contain a

ShowMessage statement that will tell you - when you start

the server - that this CORBA skeleton object has indeed

been created. This might help pin-point a problem when

one of your objects raises exceptions or experiences

other problems.

CORBA® Exceptions

About exceptions: I didn't add the Account Error structure

and AccountException type just for fun; I want to use

them as well. The obvious place to raise an

AccountException is inside the withdraw method of the

MyAccount interface (and if you look closely at the IDL

file, you also see that that's the only place where we can

raise that exception). If the balance is (still) empty, no

money can be withdrawn. And you should also get an

error if you try to withdraw more money than is currently

in your account (although a real bank would probably

only show you a warning and charge with interest

instead).

We need to create an exception, and assign a value to its

field Error of type AccountError. The easiest way to do

VisiBroker ®

9

this is to pass the initial values as argument to the

constructor of the TAccountError class (which constructs

the TAccountError structure). The complete code can be

seen in the new version of the TMyAccount.withdraw

method (which starts by checking the fact that the

amount to withdraw cannot be negative), see Listing 3.

procedure TMyAccount.withdraw(const
amount: Single);
var
 Error: TAccountError;
begin
 if amount <= 0 then
 begin
 writeln('Cannot withdraw negative
amount ',amount:1:2);
 Error :=
TAccountError.Create(amount,'Cannot
withdraw neg. amount %f');
 raise EAccountException.Create(Error);
 end
 else
 if fbalance <= 0 then
 begin
 writeln('Balance zero or negative:
',fbalance:1:2);
 Error :=
TAccountError.Create(fbalance,'Balance
zero or negative: %f');
 raise
EAccountException.Create(Error);
 end
 else
 if amount > fbalance then
 begin
 writeln('Balance not enough:
',fbalance:1:2);
 Error :=
TAccountError.Create(fbalance,'Balance not
enough: %f');
 raise
EAccountException.Create(Error);
 end
 else
 fbalance := fbalance - amount;
end;
Listing 3. New TMyAccount.withdraw
Implementation

Note that this example combines the server side

structures technique with server side exceptions

(previously impossible, even with the earlier version of

VisiBroker 3.3 for Delphi 5 that shipped in 1999). Also

note that since the CORBA Server is a CONSOLE

application, I can simply use written statements to report

an error in the CORBA server output window.

CORBA® Client

Now that we've created the CORBA Server project and

implemented the Server Skeleton, it's time to focus on the

CORBA client application. First, we need to start the

IDL2Pas Wizard again, but this time, the CORBA Client

Application wizard. It will look almost identical to the

CORBA Server Application wizard (you need to look at

the caption to see the difference). We obviously need to

select the same DrBob42.idl file for which we can

generate the client stubs for our CORBA client.

Figure 5. Adding DrBob42.idl to the Console CORBA Client Application

The difference between the CORBA Server Application

and Client Application wizard becomes clear in the

Options tab of the Wizard: the server skeleton options are

disabled (there won't be any server skeleton code

generated anyway). Other than that, the same options are

available to check or uncheck.

VisiBroker ®

10

Figure 6. IDL2Pas CORBA Client Options

The framework is again generated by the IDL2Pas

Wizard, but this time we need to look at the interfaces, as

defined in DrBob42_i.pas, and use the client stubs, as

available in DrBob42_c.pas.

Because we generated a Windows CORBA Client

application, we get a main form, and must perform some

special CORBA initialization before doing anything else.

We can either insert a call to CorbaInitialize in the main

project source code, or make sure this routine is called in

the OnCreate event of the main form. I'll use the latter

technique here, so I won't have to bother you with the

CORBA client main project file. In fact, if you call

CorbaInitialize in the OnCreate event of your main form,

you don't even have to include the generated DrBob42_i

and DrBob42_c units in the uses clause of the CORBA

client project file. The consequence is that we need to

add these units to the Client main form, but a comment to

tell you that is already generated in the main form unit by

the IDL2Pas wizard itself. The IDL2Pas wizard has also

added a special method called InitCorba to the Form class

in the main form unit. The InitCorba routine contains the

call to CorbaInitialize, but could also be used to create

(global) instances of the CORBA server objects, as I've

done in Listing 4.

unit ClientForm;
interface
uses
 Windows, Messages, SysUtils, Classes,
Graphics, Controls, Forms, Dialogs,
 Corba, DrBob42_i, DrBob42_c;

type
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 private
 { private declarations }
 Rate: Rates;
 Acct: Account;
 MyAcct: MyAccount;
 protected
 { protected declarations }
 procedure InitCorba;
 public
 { public declarations }
 end;

var
 Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.InitCorba;
begin
 CorbaInitialize;
 Rate := TRatesHelper.Bind;
 Acct := TAccountHelper.Bind;
 MyAcct := TMyAccountHelper.Bind;
end;

procedure TForm1.FormCreate(Sender:
TObject);
begin
 InitCorba;
end;

end.
Listing 4. CORBA Client Main Form Implementation

Note that we do not explicitly have to destroy the CORBA

objects (and that the objects themselves again are the

VisiBroker ®

11

Rates, Account and MyAccount types that are just aliases

for the server skeleton types, but this time called the

client stubs).

Figure 8. Project Manager for both CORBA Server and Client

Note that it is convenient to use the Project Manager to

quickly navigate between the CORBA Server and CORBA

Client projects (and also note how they share the same

DrBob42_i.pas and DrBob42_c.pas files).

Using Client Stubs

It's nice that our client form creates the CORBA objects in

the OnCreate event, but this wouldn't be very useful if we

didn't use the CORBA objects in some way. So, I've

added two buttons to the client form; one to deposit one

dollar to the MyAccount object, and one to (try to)

withdraw 42 dollars from that account. Finally, I've added

a label that will display the current balance of MyAccount

after each of the two buttons have been pressed (and the

corresponding MyAccount CORBA server method has

been executed).

Figure 9. CORBA Client Form in Action

The OnClick events from the two buttons can be seen in

Listing 5. Note that we can actually use the

EAccountException type, which holds the field called

Error of type AccountError with two fields called Message

(the error message) and Account (the value of balance or

the amount, used in the error message).

procedure TForm1.ButtonDepositClick(Sender:
TObject);
begin
 Assert(MyAcct <> nil,'No connection to
CORBA Server');
 MyAcct.deposit(1);
 LabelBalance.Caption :=
 Format('Current balance: %f (%f%%)',

[MyAcct.balance,MyAcct.get_rates(Rate)])
end;

procedure TForm1.ButtonWithdrawClick(Sender:
TObject);
begin
 Assert(MyAcct <> nil,'No connection to
CORBA Server');
 try
 try
 MyAcct.withdraw(42);
 except
 on E: EAccountException do

ShowMessage(Format(E.Error.ErrorMessage,[E.E
rror.Balance]))
 end
 finally
 LabelBalance.Caption :=
 Format('Current balance: %f (%f%%)',

[MyAcct.balance,MyAcct.get_rates(Rate)])
 end;
end;

Listing 5. OnClick Implementations

It is important that we make sure that the MyAcct variable

is indeed pointing to a valid CORBA object. If the

initialization (done with the MyAccountHelper.Bind

function) failed, then MyAcct will still be nil, which is

why I usually either disable all subsequent action buttons

in the OnCreate method, or explicitly include an assert in

the OnClick methods of the buttons themselves (as can

be seen in Listing 5).

The next example that you can see in Listing 5 is based

on a combination of interface inheritance (the fact that

VisiBroker ®

12

MyAccount inherits from Account) and passing interfaces

as arguments (the fact that we can pass Rate as argument

to the MyAcct.get_rates method).

The final example in this white paper is using the special

structures, enumerated types, arrays and sequences that

are passed to the test method of the ADT interface. The

client needs to create the arguments and then just pass

them as arguments to the ADT CORBA object (see listing

6):

procedure FinalExample;
var
 SA: StructArray;
 SS: StructSequence;
 UT: UnionType;
begin
 SA[0] := TStructType.Create(36, 0,
'Robert');
 SA[1] := TStructType.Create(36, 1,
'Erik');
 SA[2] := TStructType.Create(36, 2,
'Swart');

 SetLength(SS, 3);
 SS[0] := TStructType.Create(35, 0,
'Yvonne');
 SS[1] := TStructType.Create(6, 1, 'Erik');
 SS[2] := TStructType.Create(4, 2,
'Tasha');

 UT := TUnionType.Create;
 UT.i := 'Union'; { or UT.age := 42; }

 ADT.test('Hi', second,
TStructType.Create(1, 2, 'DrBob42'), UT, SA,
SS);
end;

Listing 6. ADT Example

We didn't actually do anything with the passed

parameters inside the test method (see listing 2), but

since you get full code insight support, it's easy to

actually get your hands on the properties and fields inside

the passed structures (so I leave that as an excercise for

the reader).

VisiBroker 3.3 for Delphi 5 comes with many more

snippets and code examples in the DEMOS directory, and

it pays to examine them all to get a feeling (and example

code) of how things are working.

Action!

Before you can start the CORBA client, you must first

make sure the CORBA server is running. Before you can

run the CORBA server, you must make sure that the

VisiBroker Smart Agent is running (at least somewhere on

the IP-subnet). Note that VisiBroker 3.3 for Delphi 5

contains a developer license to develop and test all this,

but not a deployment license. When you're ready to

install and deploy your CORBA application "in the field",

you need to contact your local Borland office and inquire

about a VisiBroker license.

Further VisiBroker Enhancements

In this white paper, we've seen examples of using the

IDL2Pas to generate both Server Skeletons and Client

Stubs. We've implemented the Server Skeletons, and used

IDL features like interface inheritance, interfaces passed

as arguments, IDL structures and server-side exceptions.

If you're interested in CORBA with Delphi 5, then I urge

you to start working with the new VisiBroker 3.3 for

Delphi 5. CORBA support in Delphi 5 the way it should

have been from the start!

VisiBroker ®

13

Bob Swart (aka Dr.Bob - www.drbob42.com) is an IT

Consultant for the Everest Delphi OplossingsCentrum

(DOC) a PinkRoccade nv Company, and has spoken at

Borland Conferences since 1993. He is a free-lance

technical author for The Delphi Magazine and

UK-BUG Developer's Magazine, Delphi Developer and

has written chapters for The Revolutionary Guide to

Delphi 2 (WROX), Delphi 4 Unleashed, C++Builder 4

Unleashed, and C++Builder 5 Developer's Guide (SAMS).

This white paper is an extended version of an article

which originally appeared in The Delphi Magazine

(www.TheDelphiMagazine.com) and is used with the

permission of the publishers, iTec.

Made in Borland®. Copyright © 2001 Borland Software Corporation. All rights
reserved. All Borland brand and product names are trademarks or registered
trademarks of Borland Software Corporation in the United States and other countries.
Java is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and
other countries. CORBA is a trademark or registered trademark of Object Management
Group, Inc. in the U.S. and other countries. 11857

100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

